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A B S T R A C T

Many countries maintain nationwide groundwater networks to monitor the status of their groundwater
resources. For effective groundwater resource management, it is fundamental to understand the groundwater
dynamics measured in the individual monitoring wells. Nationwide monitoring networks typically cover
multiple aquifer systems with different degrees of environmental complexity. The analysis of the data of
such networks thus requires flexible modeling approaches. In this study, we assessed the applicability
and performance of lumped-parameter models using impulse response functions, as implemented in the
Pastas software, to simulate hydraulic head data from the nationwide groundwater monitoring network in
Switzerland. The selected 28 monitoring wells in the network are situated in unconsolidated, relatively shallow
aquifers across Switzerland. Given the very diverse topography in the study area, snowmelt processes affect
some aquifers, while groundwater–surface water interactions are important in the valleys. Different linear and
nonlinear models were tested to take precipitation and potential evaporation into account, with a new model
developed as part of this study to account for the effect of snow processes on recharge generation. After
generally good fits in both the calibration and evaluation were achieved, the models were used to identify
and quantify which stresses (e.g., precipitation, river stages) control the groundwater dynamics. The results
show that precipitation and evaporation explain large parts of the measured dynamics, and about half of
the monitoring wells in the network appear to be influenced by river stages. Explicitly accounting for snow
processes in the recharge generating process is found to improve the simulation of the head dynamics across
Switzerland, particularly for wells in high-altitude aquifers. This study demonstrates for the first time the
applicability of lumped-parameter models using impulse response functions to model heads in Switzerland,
and more generally, in climatic settings where snow processes are impacting the head dynamics.
1. Introduction

Groundwater supplies freshwater to human populations and sup-
ports groundwater-dependent ecosystems around the world. Because of
its importance, groundwater quality and quantity is closely monitored
in many countries through nationwide monitoring networks. To assess
the current water security as well as help forecast future changes in
groundwater availability, it is fundamental to understand and pre-
dict the groundwater dynamics observed in the individual monitoring
wells (e.g., Taylor et al., 2013). Usually, process-based groundwater
models are used for this purpose, but at the scale of nationwide
networks this may not always be feasible due to constraints in time,
financial resources, and data to calibrate such complex models. Bakker
and Schaars (2019) argued that, depending on the questions asked,
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E-mail address: Raoul.Collenteur@eawag.ch (R.A. Collenteur).

it may be possible to provide answers with much simpler point-scale
models. Rather than modeling the groundwater dynamics of (multiple)
entire aquifer systems, individual models are created for each mea-
surement well in the monitoring network. Advantages of this approach
include lower input data requirements and shorter model development
and running times.

In several countries, point-scale models are already used opera-
tionally to analyze nationwide monitoring networks and groundwater
systems. In the United Kingdom, for example, the British Geologi-
cal Survey maintains an operational system that uses the lumped-
parameter model AquiMod to provide seasonal outlooks of the ground-
water levels (Mackay et al., 2014). In the Netherlands, Zaadnoordijk
et al. (2019) applied transfer function noise (TFN) models using physi-
cally based impulse response functions to analyze tens of thousands of
vailable online 12 September 2023
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groundwater time series, with precipitation and potential evaporation
as stresses driving the groundwater dynamics. The results are shared in
an online platform (https://www.grondwatertools.nl/gwsinbeeld/) and
are continuously improved. Response functions describe the response
of the dependent variable (e.g., groundwater levels) to an independent
variable (e.g., pumping or recharge). Although Zaadnoordijk et al.
(2019) used only precipitation and potential evaporation in the models,
a distinct advantage of this type of model is that it is straightforward
to add other stresses to the models (von Asmuth et al., 2008). Ap-
plications in variety of countries (e.g., India, van Dijk et al., 2019;
Brazil, Manzione et al., 2017; the Baltic states, Babre et al., 2022)
have demonstrated that such models are applicable in a variety of
climatological and hydrogeological settings, although alternations may
be necessary for some locations.

One such alternation, proposed by Peterson and Western (2014), is
the inclusion of a root zone model that computes groundwater recharge
in the TFN model, and in that way account for the nonlinear head
response to precipitation and potential evaporation. In a case study
on Australian aquifers, Peterson and Western (2014) showed that this
approach improved the simulation of the heads compared to a linear
precipitation excess model that is commonly applied to account for
the effect of precipitation and evaporation in the model. The use of a
nonlinear root zone model was also found to improve the simulation of
groundwater levels in Austria (Collenteur et al., 2021). Moreover, Col-
lenteur et al. (2021) showed that the recharge flux estimated with such
models compared well to lysimeter data, suggesting that the method
may also be suitable to estimate recharge rates. Although the number
of studies applying nonlinear models is growing (see, for example, Kong
et al., 2021; Shapoori et al., 2015b), applications are still limited to a
few geographic locations despite these promising results. More studies
are required to further test and demonstrate their general applicabil-
ity to simulate heads in different hydrogeological and climatological
settings.

Particularly with the inclusion of the aforementioned nonlinear root
zone models, we argue that TFN models using impulse response func-
tions have become gray-box type models, built on empirical relation-
ships between the stresses and measured groundwater dynamics (see,
for example, Liu et al., 2019). Since the terms commonly used to refer
to these models, such as ’time series models’ or ’transfer-function noise
models’, have a strong connotation with black-box type of models, we
refer to them as ’lumped-parameter models’ here. This term is more
commonly used in other hydrological disciplines (e.g., rainfall-runoff
modeling) to refer to gray-box type models. In this study, lumped-
parameter models are applied to model groundwater dynamics, because
of their flexibility in model structure and stresses, the ease of model
setup, low data requirements, and, foremost, good model performance
in calibration and evaluation. Additionally, when adopting the non-
linear approach described earlier it is straightforward to account for
additional processes affecting groundwater recharge in the model, such
as snowfall and snowmelt.

The objective of this study is to test the applicability of lumped-
parameter models and to improve the understanding of groundwa-
ter dynamics observed in unconsolidated aquifers in Switzerland. Ap-
plications of lumped-parameter models in Switzerland have so far
been limited. Groundwater data is, however, commonly available and
the Federal Office for the Environment (FOEN) maintains a national
groundwater network to monitor the situation and development of
the groundwater resources in terms of both quality and quantity. The
locations of the considered groundwater monitoring wells range from
the relatively flat Swiss Plateau to (pre-)alpine settings with high
altitudes, and cover various topographical and climatological areas.
Given this setting, some aquifers are affected by snow and snowmelt
processes. This affects the infiltration pattern and timing, and, through
groundwater recharge, the groundwater dynamics and storage (e.g.,
Meeks et al., 2017). To adapt the models to this new environment,
the nonlinear recharge model developed in Collenteur et al. (2021) is
extended with a degree-day snow model to take snow processes into
2

account. Specifically, the objectives of this study are as follows:
1. To assess the applicability and performance of different lumped-
parameter models to simulate groundwater dynamics for the
nationwide groundwater monitoring network in Switzerland.

2. To identify the stresses that can explain the head fluctuations
and quantify their relative importance in explaining the mea-
sured groundwater dynamics.

3. To assess the impact of the newly implemented snow model
routine for model performance, especially for groundwater dy-
namics in snow impacted regions.

2. Study area and data

2.1. Swiss groundwater monitoring network

In Switzerland, the Federal Office for the Environment (FOEN) oper-
ates a national groundwater monitoring network (NAQUA) to provide
a representative view of the state and development of groundwater
resources in the country. The development of groundwater resources
is recorded in terms of both groundwater quality and quantity. In this
study, we focus on the analysis of the hydraulic head time series (here-
after ‘heads’) measured in relatively shallow piezometers in the QUANT
module of the network (see Fig. 1a). Note that the numbers in Fig. 1a
can be related to the names of the locations of the monitoring wells
using Table 1. Of the available 30 piezometers, 28 wells with long-
term time series (defined as 15 years of daily head measurements) were
selected for further analysis. All selected monitoring wells are located in
unconsolidated and unconfined aquifers (see Fig. 1b). These wells are,
to the best of our knowledge, not affected by water abstractions and
thus groundwater dynamics are driven by groundwater–surface water
interaction, snow melt processes and vertical groundwater recharge.
The depth to the water table (DTW), calculated as the vertical distance
between the land surface and the average measured head, varies be-
tween approximately 1 and 78 m. The locations cover a wide range
of altitudes, with high-alpine aquifers (max. 1702 m) in the southeast
and large alluvial aquifers in the north (min. 277 m). Land use types
consist of agricultural areas, forests, and urban areas (see Fig. 1b). All
daily head time series start in 2005 or earlier (see also Table 1), and
the heads are still being recorded at the time of writing as part of
an active monitoring network. A summary of the hydrogeological and
meteorological conditions at each location is provided in Table 1.

2.2. Meteorological and river stage data

Daily precipitation and temperature data for the location of each
monitoring well for the period 1990–2020 are taken from gridded
data sets (RhiresD and TabsD) provided by MeteoSwiss (MeteoSwiss,
2022). The long-term averages are shown in Table 1. Daily potential
evaporation is calculated from the temperature data using the Ha-
mon method (Hamon, 1961), as implemented in the Python package
PyEt (Vremec and Collenteur, 2022). The mean annual precipitation
ranges from approximately 531 mm/a in Visp to 1703 mm/a in Lam-
one, and the mean annual potential evaporation ranges from 436 mm/a
in Davos to 830 mm/a in Schaffhausen in Northern Switzerland. The
mean annual temperature ranges from around 2 ◦C in Samedan to
12 ◦C in Lamone. The average number of potential snow days per
year, defined as the number of days with precipitation where the
average daily temperature drops below 0 ◦C, ranges between 4 and 94
days per year in Lamone and Davos, respectively. The wide range of
meteorological conditions is also shown in Fig. 1d and Fig. 1e.

Many of the measured head fluctuations are potentially affected
by fluctuations in the stages from nearby rivers (see column DTR in
Table 1). It was visually checked if a river stage gauging station was
within reasonable distance (a few kilometers) from the monitoring
wells using the hydromaps.ch platform (accessed 2022/03/01). River

stage data is obtained for 19 out of 28 groundwater monitoring wells.

https://www.grondwatertools.nl/gwsinbeeld/
https://www.hydromaps.ch
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Table 1
Overview of the meteorological, topographical, and aquifer conditions of all monitoring wells. DTW=Depth to Water
Table [m]; DTR=Distance to river [m]; Alt=Altitude [m]; Prec=Precipitation [mm/a]; Evap=Potential evaporation [mm/a];
Temp=Temperature [𝑜C]; Snow=Number of annual snowy days [days].

ID Location Start DTW DTR Alt. Prec. Evap. Temp. Snow

1 Buechberg 1993 32 1493 450 879 585 10 19
2 Crêtelongue 1976 1 127 506 623 615 11 9
3 Davos 1978 2 24 1703 1046 372 2 94
4 Ermensee 1989 18 586 476 1120 574 10 18
5 Gossau 1984 7 165 645 1321 552 9 30
6 Hasle 1990 4 170 567 1181 547 9 26
7 Kestenholz 1987 19 11 447 1097 565 9 23
8 Lamone 1981 5 245 311 1703 636 12 4
9 Maienfeld 1975 4 474 506 1063 601 10 17
10 Marthalen 1983 19 521 367 905 591 10 19
11 Massongex 1994 3 416 396 1007 601 11 10
12 Niederbipp 1977 27 406 455 1107 567 9 22
13 Oberglatt 1990 24 614 426 991 583 10 18
14 Oberwichtrach 1990 2 662 532 1080 567 9 23
15 Poschiavo 1990 1 141 969 1002 525 8 18
16 Samedan B 1980 4 612 1709 693 383 2 75
17 Schaffhausen 1987 42 1383 433 904 588 10 19
18 Sennwald 1990 2 253 435 1219 606 11 17
19 Soral 1977 78 1120 448 960 609 11 8
20 Trub 2005 8 54 791 1484 498 7 47
21 Utzenstorf 1990 7 159 483 1064 565 9 21
22 Visp 1993 4 216 646 531 552 9 22
23 Volketswil 1975 39 2031 515 1178 576 10 19
24 Vétroz 1991 3 14 477 555 594 10 12
25 Wila 1990 4 69 573 1372 560 9 27
26 Wilchingen 1968 35 453 413 964 570 9 20
27 Worben 1976 1 247 435 1033 593 10 14
28 Zürich 1972 11 309 411 1123 594 10 17
w
r
f
r
t
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Most of the data (14 monitoring stations) are obtained from the na-
tional monitoring network operated by the FOEN. For five locations,
the river stage data were acquired from the local Cantonal authorities.
An overview of the selected rivers and data is available in the materials
provided through the Zenodo repository (see Data availability section
for details). The data was re-sampled to daily river stage fluctuations
by averaging the hourly values and normalized by subtracting the
minimum measured river stage from the time series. The data for
Lamone does not cover the entire simulation period, which may affect
the ability of the model to estimate the effect of the river on the heads
at these locations.

3. Methods

3.1. Lumped-parameter groundwater model

A lumped-parameter groundwater model is used to simulate the
head time series. Specifically, we use the method of impulse response
functions, as proposed by von Asmuth et al. (2002). In this method,
predefined impulse response functions are used to describe how the
head responds to different stresses. All models are implemented in Pas-
tas (Collenteur et al., 2019, v0.22.0), an open source Python package
to perform time series analysis on groundwater data. The basic model
structure is as follows:

ℎ(𝑡) =
𝑀
∑

𝑚=1
ℎ𝑚(𝑡) + 𝑑 + 𝑟(𝑡) (1)

where ℎ(𝑡) [L] are the measured heads, ℎ𝑚(𝑡) [L] is the contribution of
stress 𝑚 to the head fluctuations (𝑀 stresses in total), 𝑑 [L] is the base
levation of the model, and 𝑟(𝑡) [L] are the model residuals.

The contributions from different stresses (ℎ𝑚) are computed using
ifferent model subroutines, named stress models in Pastas. Each stress
odel transforms one or more stress time series (e.g., precipitation,

iver stage) into a single head contribution. In this way, it is possible to
ecompose head time series into individual contributions from different
tresses. Two stress models are used in this study, one to account for
recipitation and evaporation, and one to account for surface water
3

r

fluctuations. These two different stress models are described in detail
in the sections below.

3.2. Effect of precipitation and evaporation

Different approaches are available from the literature to take pre-
cipitation and potential evaporation into account. In this study, three
different models are applied and compared, named model structures
M1, M2, and M3 and described in detail below. From model M1 to
M3, the models increase in complexity of the processes included and
the number of parameters. Each of these three models computes the
contribution from precipitation and potential evaporation in two steps.
In the first step, a single stress (a recharge flux, 𝑅) is computed from
the precipitation and potential evaporation. In the second step, the final
contribution to the head fluctuations is computed by convolution of the
flux 𝑅 with an impulse response function following von Asmuth et al.
(2002):

ℎ𝑚(𝑡) = ∫

𝑡

−∞
𝑅(𝜏)𝜃𝑟(𝑡 − 𝜏)𝑑𝜏 (2)

here 𝜃𝑟 is the impulse response function that describes how the head
esponds to recharge pulses. In this study, a scaled gamma response
unction (see e.g., Collenteur et al., 2019) is used to simulate the head
esponse to groundwater recharge or precipitation excess. The shape of
he response function is determined by three parameters that need to
e estimated (𝐴, 𝑛, and 𝑎), as is visualized in Fig. 2.

.2.1. M1: Linear model
The first approach uses a linear model to compute 𝑅 in a simple

ay from precipitation (𝑃 ) and potential evaporation (𝐸𝑡) as follows:

= 𝑃 − 𝑓𝐸𝑡 (3)

here 𝑓 is an evaporation factor to update the potential evaporation
o the local conditions. An advantage of this model is that only one
arameter needs to be estimated (𝑓 ), apart from the parameters of
he response function. This comes at the cost of a highly simplified

epresentation of the soil and unsaturated zone processes and the
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Fig. 1. Overview of the locations of the monitoring wells and the hydrogeological and meteorological conditions. The numbers in map (a) relate to the ID for each location in
Table 1.
Fig. 2. Examples of response functions, illustrating the effect of the parameter 𝑛 on the
shape of the impulse response (left) and the step response (right). The step response
is the integral of the impulse response function over time.

assumptions that (1) the heads respond linearly to precipitation and
potential evaporation, independent of the state of the system, and (2)
actual evaporation is not limited by water availability and occurs at
4

the rate of 𝑓 times potential evaporation. As a result, the flux 𝑅 can
be both positive and negative. This may for example be the case when
vegetation can tap into the groundwater to continue transpiration when
limited soil water is available. Despite its apparent simplicity it should
be noted that this model has been proven useful to solve groundwater
problems in many studies, particularly in shallow groundwater systems
where the depth to water table is only a few meters (e.g., Van der Spek
and Bakker, 2017; Zaadnoordijk et al., 2019).

3.2.2. M2: Flex model
The second model applied in this study is the nonlinear recharge

model developed in Collenteur et al. (2021). This model is based on
a soil–water balance approach and comparable to the model presented
in Peterson and Western (2014). In this approach, a model consisting of
two connecting reservoirs is used to compute recharge to the groundwa-
ter and to account for the (threshold) nonlinear effects of interception
processes and the root zone. A graphic representation of the model is
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Fig. 3. Conceptual recharge models applied in this study: (a) the Flex model (M2)
rom Collenteur et al. (2021), and (b) the Flex-snow model (M3) that includes an
dditional snow reservoir.

hown in Fig. 3a. Only a summary description of the model is given
ere and we refer to Collenteur et al. (2021) for a detailed description.

Precipitated water (𝑃 ) exceeding the interception capacity (𝑆𝑖,𝑚𝑎𝑥)
ontinues to the root zone storage reservoir. There, the infiltrating
ater is temporarily stored and released as soil evaporation and tran-

piration (𝐸𝑡,𝑠) or recharge to the groundwater (𝑅). The recharge to the
roundwater is computed as follows:

= 𝑘𝑠(
𝑆𝑟

𝑆𝑟,𝑚𝑎𝑥
)𝛾 (4)

here 𝑘𝑠 [LT−1] is the saturated hydraulic conductivity, 𝑆𝑟,𝑚𝑎𝑥 [L] is
he storage capacity of the root zone reservoir, and 𝛾 [-] is a parameter

determining the nonlinearity of the recharge flux with respect to the
saturation of the root zone.

An important feature of this model is that the actual evaporation
is limited by the amount of available soil moisture, and evaporation
stops if no soil water is available. The improved representation of
hydrological processes impacting the recharge flux and ultimately the
response in the heads comes at the cost of introducing additional
parameters. This approach adds six parameters to the model, some of
which may be fixed to sensible values. Here, the maximum interception
capacity is fixed to 2 mm, and the saturation of the root zone at
which actual evaporation equals potential evaporation (𝐿𝑝) is fixed to
𝐿𝑝 = 0.25. Parameters 𝑘𝑠, 𝛾, 𝑆𝑟,𝑚𝑎𝑥, and 𝑘𝑣 (an evaporation factor) are
nferred from the hydraulic head data by model calibration.

.2.3. M3: Flex-snow model
The third model is developed as part of this study. This model has

he same basic structure as M2, but extends that model to take the effect
f snowfall and snow melt on the recharge into account. The M2 model
tructure presented in the previous section was developed and tested
or an environment where precipitation occurs primarily as rainfall.
n large parts of Switzerland, however, precipitation also occurs as
nowfall. The occurrence of snowfall affects the infiltration pattern
nd timing, and through groundwater recharge, the head dynamics
nd storage. We refer to Lundberg et al. (2016) for a review of the
mplications of snowfall on infiltration patterns.

To account for snow processes in the calculation of groundwater
echarge, the soil–water balance model described above is extended
ith a degree-day based snow model (e.g., Kavetski and Kuczera,
007). The degree-day snow model was chosen because of the model
implicity but also for the good performance for snow melt model-
ng (Girons Lopez et al., 2020; Meeks et al., 2017). Moreover, we expect
hat the head time series may not contain enough information to infer
arameters of more complex snow models. In Fig. 3b the recharge
odel extended with the snow reservoir is visualized.
5
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The purpose of the snow model is to separate precipitation into
nowfall and rainfall, temporarily store the snowfall, and generate snow
elt when the temperature rises above a certain temperature threshold.
he water balance for the snow storage reservoir is written as follows:

d𝑆𝑠
d𝑡 = 𝑃𝑠 −𝑀, (5)

where 𝑆𝑠 [L] is the snow water storage, 𝑃𝑠 [LT−1] is the part of
the precipitation that occurs as snow and 𝑀 [LT−1] the snow melt.
Precipitation is divided into snowfall (𝑃𝑠) or rainfall (𝑃𝑟) as follows:

𝑃𝑠 =

{

𝑃 if 𝑇 ≤ 𝑇𝑡,
0 if 𝑇 > 𝑇𝑡

(6)

𝑃𝑟 =

{

𝑃 if 𝑇 > 𝑇𝑡,
0 if 𝑇 ≤ 𝑇𝑡

(7)

here 𝑇 [𝛩] is the daily mean air temperature and 𝑇𝑡 [𝛩] is the
emperature below which precipitation occurs as snowfall and the
emperature at which the melt starts. The snow melt (𝑀 [LT−1]) is
etermined in a similar fashion:

=

{

0 if 𝑇 ≤ 𝑇𝑡,
𝑘(𝑇 − 𝑇𝑡) if 𝑇 > 𝑇𝑡

(8)

here 𝑘 [L𝛩−1T−1] is a factor that determines the rate of snow melt.
q. (8) is smoothed using a logistic function according to Kavetski and
uczera (2007). In total, the snow model adds two parameters to the
riginal recharge model (𝑇𝑡 and 𝑘) that need to be estimated. Here,
he parameter 𝑇𝑡 is fixed to 𝑇𝑡 = 0 ◦C, and only 𝑘 is estimated. Apart
rom precipitation and potential evaporation, the extended model also
equires time series of the mean daily temperature as input data. This
ill generally not increase input data requirements, as the temperature

s required to compute the potential evaporation.

.3. Contribution from river fluctuations

For the locations with a nearby river and related monitoring station,
he river is added to the model as an additional stress. The head
ontribution from river stage fluctuations is computed through the
onvolution of a time series of measured river stages with a separate
mpulse response function, similar to Eq. (2). In this study, an expo-
ential response function with two parameters (𝐴𝑟𝑖𝑣 and 𝑎𝑟𝑖𝑣) is used.
his response function is equal to the scaled gamma response function
here the parameter 𝑛 is fixed to 𝑛 = 1 (see Fig. 2).

After the model is calibrated (details below), it is checked whether
he effect of the river stress can be determined with reasonable cer-
ainty and should be included in the model or not. For this purpose,
he uncertainty in the estimated response function is used, applying the
ollowing criterion (e.g., Collenteur et al., 2019):

𝑟𝑖𝑣 > 1.96𝜎𝐴,𝑟𝑖𝑣 (9)

here 𝐴𝑟𝑖𝑣𝑒𝑟 is the gain of the response function (see Fig. 2) and 𝜎𝐴,𝑟𝑖𝑣
s the estimated standard error of this parameters. The rationale behind
his criterion is that if the gain of the response function can be inferred
rom the data, it is more likely that the river stress also caused (part of)
he measured head fluctuations. If the above criterion is not met, the
iver stress is removed from the model and the model is re-calibrated.
o obtain physically plausible results, the parameter 𝐴𝑟𝑖𝑣 has an upper

imit of 𝐴𝑟𝑖𝑣 = 1, reasoning that the rise in the head caused by the river
annot exceed the rise in the stage of the river.

.4. Noise modeling and autocorrelation

The residual errors 𝑟(𝑡) in Eq. (1) are often found to be strongly
orrelated in time. For example, Marchant et al. (2016) showed that

ven when modeling monthly head measurements in the UK, significant
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autocorrelation was still present in the residuals for time lags up to
20 months. If significant autocorrelation exists, the model violates
the assumption that the residual errors are independent and normally
distributed with a zero mean and a constant variance (∼𝑁(0; 𝜎2)).
The consequence of violating these assumptions is that the parameter
uncertainties are unreliable and may not be used. To overcome this
issue, noise models can be applied to transform the residuals into
uncorrelated (white) noise (𝜐(𝑡)). The commonly used auto-regressive
model of order one (AR(1), e.g., von Asmuth et al., 2002) is applied
for this purpose in this study. The AR(1) parameter of this model (𝛼)
determines how quickly the residual error decays and needs to be
inferred from the data.

Despite the application of a noise model, the preliminary results
from this study and a previous study (Collenteur et al., 2021) showed
that the AR(1) noise model is generally unable to reduce the residuals
to uncorrelated white noise when using daily head measurements.
To still obtain models with reliable estimates of the parameter un-
certainties, the original daily head measurements are resampled to
lower measurement frequencies through the removal of measurements.
Thirty sub-samples are taken from each original head time series, by
gradually increasing the time interval between head measurements
from 1 day to 30 days. Models are created and calibrated for each of
these 30 sub-samples and the resulting noise time series are checked
for autocorrelation. This approach allows for the systematic analysis of
the effect of decreasing temporal resolution of the head measurements
on the autocorrelation in the noise and the estimated model parameters
and uncertainties.

The models are checked for autocorrelation for the first 15 time lags
using the Ljung–Box test adapted for non-equidistant time series (Stof-
fer and Toloi, 1992). This tests the Null-hypothesis (𝐻0) that the noise
errors are independent against the alternative hypothesis (𝐻𝑎) that the
errors are not independent. If the 𝑝-value is above a chosen significance
level (𝛼 = 0.05), it is concluded that 𝐻0 cannot be rejected and there is
no significant autocorrelation in the noise errors. For each of the model
structures, the model calibrated to head data with the highest temporal
resolution but without significant autocorrelation is selected. If a model
structure has significant autocorrelation for all temporal resolutions of
the head data, the model with the lowest temporal resolution (𝛥𝑡 = 30
days) is used.

3.5. Model calibration, evaluation, and selection

Depending on the model structure (e.g., M1-M3, with or without a
river) between 5 and 10 parameters need to be inferred from the head
data. An overview of the model parameters is provided in Table 2. The
parameters are estimated by minimizing the sum of the weighted noise
criterion, following von Asmuth et al. (2002). A two-stage calibration
strategy is applied, following Collenteur et al. (2021). First, the model
is calibrated without a noise model, effectively minimizing the sum of
the squared residuals (𝑟). Then, the parameter determining the size of
the root zone reservoir (𝑠𝑟,𝑚𝑎𝑥) is fixed, as this parameter was found to
be difficult to estimate while simultaneously estimating the parameters
of the noise model. In the second calibration, the noise model is added
and all parameters (except 𝑠𝑟,𝑚𝑎𝑥) are estimated simultaneously, using
the optimal parameter values found in the first calibration as initial
parameters. This strategy was found effective to obtain a good overall
fit between the simulated and measured heads, while using a noise
model.

The head data is divided into twelve years of data used for calibra-
tion and six years of data used for model evaluation. The evaluation
data is used to select the model structure for each monitoring well
that best describes the measured heads throughout the entire obser-
vation period (2000–2021). In that sense, it should be noted that
the evaluation period is not used to demonstrate the ability of the
model to perform outside of its training period, as it is also commonly
6

understood (see Arsenault et al., 2018, and references therein). We are
Fig. 4. Calibration and model evaluation scheme applied in this study. The data from
the twelve years 2000–2002, 2007–2009, 2012–2015, and 2018–2021 are used for
model calibration and the six years 2004, 2005, 2010, 2011, 2016, and 2017 are used
for model evaluation.

Table 2
Model parameters, units, and the boundaries used for the models. 𝜇𝑟 is the mean of
the residuals.

Model Param. Units Bounds Fixed

Base 𝑑 m – 𝜇𝑟

Recharge 𝐴 – [1e−9, ∞]
response 𝑎 d [1e−2, 2e3]

𝑛 – [1e−2, 1e2]

M1 𝑓 – [−1.5, −0.5]

M2/M3 𝑘𝑣 – [0.5, 1.5]
𝑠𝑖,𝑚𝑎𝑥 mm – 2
𝑠𝑟,𝑚𝑎𝑥 mm [1e−5, 1e3]
𝑘𝑠 mm/d [0, 1e4]
𝑙𝑝 – – 0.25
𝛾 – [1e−5, 20]

M3 𝑡𝑡 𝑜C – 0
𝑘 mm/𝑜C/d [1, 20]

River 𝐴𝑟𝑖𝑣 [0, 1]
𝑎𝑟𝑖𝑣 d [1e−2, ∞]

Noise 𝛼 d [1e−9, 5e3]

interested in identifying the processes (as represented in M1, M2, and
M3) that need to be taken into account to simulate the entire range of
the measured heads for our data set, and selecting a single model using
independent head data.

Some of the head time series show particularly low heads in the last
couple of years (possibly as a result of recent droughts), which are out-
side the historic range in the preceding period. We therefore refrained
from the classical split-sample setup using a calibration period followed
by an evaluation period. Instead, we opted for an odd/even type of
approach (see, for example, Arsenault et al., 2018), with alternating
calibrating and evaluation periods (as shown in Fig. 4). The calibration
and evaluation periods are separated by a warm-up period of one
year to ensure the evaluation data is independent from the calibration
data. This approach for the split-sample test makes the selection less
dependent on a specific period (e.g., the last six years), and more on
the overall fit during different periods throughout the entire period of
interest (2000–2020).

The three model structures are tested for each of the 28 monitoring
wells. The final model structure for each monitoring well is selected
based on the evaluation using four goodness-of-fit metrics computed
over the evaluation periods. The following goodness-of-fit metrics are
used: the Mean Absolute Error (MAE), the Nash–SutcliffeEfficiency
(NSE), the Kling–Gupta Efficiency (KGE, Kling et al., 2012), and the
Root Mean Squared Error (RMSE). It should be noted that changing
the temporal resolution of the head data used for model calibration
may mask deficiencies of the lumped-parameter model to reproduce the
daily measured dynamics. To prevent this and still allow comparison of
different model structures, all goodness-of-fit metrics reported in this
study to evaluate the models were computed using the original daily
head data. For each metric the three models are ranked (1 for best, 3
for worst) and the final rank for each model is computed by summing
the rank for the individual metrics. For each monitoring well the model

with the lowest rank is selected for further analysis.
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Fig. 5. Nash–SutcliffeEfficiencies (NSE) for the different model structures calibrated
against head data with different temporal resolutions, ranging from 1 to 30 days
between head measurements. The horizontal black lines indicate the NSE of the selected
model for each model structure and monitoring well.

4. Results

4.1. Head data used for calibration

We first analyze the effect of using head data with different tempo-
ral resolutions to calibrate the models on (1) the model performance,
(2) the autocorrelation in the noise, and (3) the estimated confidence
intervals. The Nash–Sutcliffe Efficiency (NSE) for the evaluation period
for each model and temporal resolution of the head data is plotted
in Fig. 5. We reiterate here that the metrics are computed using
the original daily head measurements and simulations, and are thus
directly comparable. The horizontal black lines in Fig. 5 indicate the
NSE of the model with the highest possible temporal resolution of the
heads that still passed the autocorrelation test. For some monitoring
wells and model structures there may be models calibrated to head data
with lower temporal resolutions that have a higher goodness-of-fit than
the finally selected models (horizontal black lines), although these do
not necessarily pass the autocorrelation test.

The result displayed in Fig. 5 show that the goodness-of-fit may
change depending on the temporal resolution of the head data. The use
of more head measurements to calibrate the model did not necessarily
improve the model fit. The contrary was actually often the case, i.e. the
models calibrated to less observations (green to yellow colors) often
performed better than those calibrated against head time series with
higher temporal resolutions (e.g., Davos for M1, and Gossau for M2 and
M3). In this regard the nonlinear models M2 and M3 appeared more
sensitive compared to the linear model M1 (with only one model 𝑓
arameter to calibrate in addition to the impulse parameter), as visible
y a larger spread in the data. Particularly the results from model
tructures M2 and M3 for the monitoring well in Wilchingen appear
ensitive to the head data, although these models still outperform the
1 model in all cases.

The motivation to calibrate the models to head data with dif-
erent temporal resolutions was to systematically study its effect on
he autocorrelation and ultimately the estimated confidence intervals.
wo examples of this effect are shown in Fig. 6 for the wells in
estenholz and Davos. Plots for the other wells are shown in Fig. A.11
nd Fig. A.12 in the Appendices. Both examples show how none of
7

Fig. 6. Examples of the effect of the temporal resolution of the head data used for
calibration on the 𝑝-value of the autocorrelation test and the average width (in meters)
of estimated 95% confidence intervals from the wells of Kestenholz and Davos. The
vertical dashed lines indicate the temporal resolution where the model passed the
autocorrelation test. The horizontal dashed lines indicate the significance level 𝛼 =
0.05.

the models pass the autocorrelation test for high temporal resolutions
(e.g., Kestenholz with resolution 𝛥𝑡 = 11 days for M3). This is also
true for the remainder of the data set. More models pass the test
as the temporal resolution decreases. This also affects the confidence
intervals, which in most cases remain unstable until the test is passed.
Particularly for head data with a high temporal resolution the con-
fidence intervals may be both under- or overestimated compared to
finally selected models without (or less) significant autocorrelation.
Despite the larger number of parameters, the nonlinear models often
have similar or smaller confidence intervals compared to the linear
model, indicating that the additional parameters do not lead to larger
model uncertainty. In general, these results show the importance of
dealing with autocorrelation in the noise when estimating confidence
intervals.

For further analysis, the model calibrated against the highest tem-
poral resolution head measurements while still passing the autocorre-
lation test was selected for each model structure and monitoring well.
The temporal resolution of the head data ranged between 𝛥t=3 days for
Davos and Lamone, and 𝛥t=29 days for Utzensdorf, with an average of
𝛥t=18 days. For 30 out of 84 models and for 8 out of 28 locations,
no temporal resolution of the head data resulted in uncorrelated noise
and lowest temporal resolution was used (𝛥t=30 days). The parameter
uncertainties for these models have to be interpreted with caution.

4.2. Model structure comparison

In Fig. 7 the box-plots (upper row) and cumulative density distri-
butions (lower row) of the goodness-of-fit metrics computed over the
evaluation period for the different model structures and all monitoring
wells are shown. The goodness-of-fit metrics for the individual models
for each monitoring well and the mean and median over all models
can be found in Table A.4 in the Appendices. The results show that
the nonlinear models (M2 and M3) generally outperform the linear
model (M1) for the evaluation data both in terms of absolute error
metrics (MAE and RMSE) and relative error metrics (KGE and NSE). For
example, the median MAE drops from 0.21 to 0.19 from M1 to M3, and
the median NSE increases from 0.60 to 0.65 for these model structures.
It should be noted that for some wells the linear model performed better
or that the improvement from the nonlinear models was only marginal.
The extension of the basic nonlinear model (M2) with an snow model
(M3) further improved the goodness-of-fit as measured by the NSE and
MAE for the majority of the monitoring wells.

To illustrate how the inclusion of a snow model can improve the
simulation of the head fluctuations, a closer look is taken at the internal
dynamics of the model for the monitoring well in Davos. In Fig. 8,
the measured and simulated heads, the estimated recharge, the snow

storage, and the measured snow height (as a qualitative indication)
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Fig. 7. Extended box plots and cumulative density distributions of the goodness-of-fit
metrics MAE and NSE computed over the evaluation data for all three model structures.

Fig. 8. Simulated head fluctuations, computed recharge fluxes (𝑅(𝑡)), and snow storage
state (𝑆𝑠(𝑡)) for the models without (M2) and with snow (M3) for the monitoring well
in Davos. For comparison also the measured snow height is shown.

are shown. The lowest heads were measured in the winter months
(November–April, gray shaded areas in Fig. 8), when recharge rates
are expected to be low or close to zero. In spring, when snow melts
and water infiltrates, groundwater recharge increases, and a sharp rise
in the head is measured. The model that included the snow reservoir
simulated this measured behavior well, whereas the model without
snow melt seemed unable to reproduce the measured dynamics in the
head. The simulated dynamics of snow storage (lower panel in Fig. 8)
also corresponded well to the measured snow height in the area.

4.3. Final model structure selection

The final model structures for each monitoring well were selected
using the ranks computed from the goodness-of-fit metrics. The char-
acteristics of the selected model structure for each monitoring well
and the corresponding goodness-of-fit metrics for the calibration and
evaluation periods are presented in Table 3. Plots of the measured and
simulated heads for all monitoring wells are shown in Fig. A.13 in the
Appendices. The M1 model was selected 4 times, the M2 model 7 times,
and the M3 was selected for 17 of the 28 monitoring wells. For 15
out of 19 wells where river stage data was available, the river was
maintained in the model to explain (part of) the head fluctuations. The
8

Fig. 9. Map with the Kling–Gupta Efficiency in the calibration period for each model.
For locations denoted by a square a snow model is present in the model, while for
locations denoted by a circle no snow model is present.

selected model structure and goodness-of-fit measured as the NSE in
the evaluation period are also shown spatially in Fig. 9.

The selected models generally showed a reasonably good fit to
the data with an average NSE of 0.70 and a median of 0.74. The
goodness-of-fit varied strongly between the models with NSE values
in the calibration period ranging between 0.17 and 0.97. The average
model fit decreased in the evaluation period (to NSE = 0.53). This
average is skewed substantially, however, by two wells with poorly
performing models and negative NSE values in the evaluation period
(Soral and Zürich, see also Table 3). If the results from these two
wells are excluded, the NSE only decreased to 0.67. For some wells the
models failed to accurately simulate the head data for some individual
years or periods (see for example, Zürich and Marthalen). A special case
is the model for Soral, which simulates a long term trend rather than the
seasonal dynamics. In the discussion we will speculate about possible
reasons for under-performing models. In general, however, the results
show that the majority of the observed groundwater dynamics could
be satisfactorily simulated with the lumped-parameter models and the
typically readily available applied stress data (precipitation, potential
evaporation, and river stages).

4.4. Stresses and processes driving head fluctuations

A commonly asked question is what part of the head fluctuations
can be explained by a certain stress (e.g., recharge or river stage).
Quantifying the relative contribution of a stress with a single value
(e.g., xx% of the head fluctuations can be explained from recharge)
is not a straightforward task (see, for example, Budescu, 1993, and
references therein). Here, we used the dominance analysis method
proposed by Budescu (1993) to quantify the relative importance of the
different stresses in explaining the measured heads. In dominance anal-
ysis, the relative importance of a stress is quantified by the additional
R2 contribution from a stress, averaged over all possible subset models
(e.g., including the river stress or not). The relative importance from all
stresses sum up to the R2 for the model including all stresses, making
it possible to visualize the relative contributions in a pie-chart.

In Fig. 10 and Table 3 the relative importance of the different
stresses for each well are shown. For 15 out of 28 monitoring wells
(54%), the river stage is used to explain at least part of the head
fluctuations. This shows that taking river stage fluctuations into ac-
count is important in many aquifers throughout Switzerland. For some
individual wells, the relative importance of the river stages exceeds that
of recharge importance (e.g., Massongex and Maienfeld). In particular,
the head fluctuations measured in the Rhone valley in southwestern
Switzerland (Visp, Massongex, Crêtelongue, and Vétroz) were largely
explained from the fluctuations of the river stage of the Rhone river.
For these monitoring wells, the depth to the water table is relatively
small and they are close to the river (see Table 1). Thus, strong
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Table 3
Model structure and goodness-of-fit metrics for the calibration and validation period for all monitoring wells.

Model structure Importances Calibration Evaluation

dt M river river rch unex. MAE RMSE NSE KGE MAE RMSE NSE KGE

Buechberg 30 M2 – 0.00 0.91 0.09 0.29 0.34 0.91 0.96 0.15 0.16 0.80 0.93
Crêtelongue 5 M2 Yes 0.39 0.10 0.51 0.12 0.14 0.43 0.61 0.09 0.11 0.43 0.76
Davos 3 M3 – 0.00 0.78 0.22 0.08 0.11 0.78 0.80 0.08 0.10 0.75 0.76
Ermensee 30 M1 Yes 0.30 0.49 0.21 0.28 0.37 0.80 0.89 0.25 0.34 0.73 0.69
Gossau 9 M1 – 0.00 0.75 0.25 0.20 0.26 0.74 0.78 0.21 0.26 0.76 0.77
Hasle 30 M3 Yes 0.47 0.30 0.23 0.09 0.12 0.74 0.82 0.07 0.09 0.80 0.89
Kestenholz 11 M3 – 0.00 0.95 0.05 0.21 0.25 0.96 0.97 0.25 0.32 0.88 0.94
Lamone 3 M2 Yes 0.07 0.73 0.19 0.14 0.19 0.79 0.70 0.14 0.19 0.63 0.56
Maienfeld 8 M3 Yes 0.76 0.09 0.16 0.19 0.23 0.87 0.87 0.23 0.28 0.75 0.77
Marthalen 30 M2 – 0.00 0.39 0.61 0.21 0.27 0.43 0.51 0.33 0.40 0.32 0.31
Massongex 14 M2 Yes 0.83 0.06 0.11 0.13 0.16 0.87 0.84 0.11 0.14 0.87 0.84
Niederbipp 21 M3 – 0.00 0.96 0.04 0.21 0.27 0.95 0.96 0.21 0.24 0.94 0.96
Oberglatt 30 M3 Yes 0.15 0.43 0.42 0.64 0.82 0.37 0.66 0.66 0.78 0.51 0.58
Oberwichtrach 5 M3 Yes 0.70 0.27 0.03 0.05 0.06 0.97 0.98 0.05 0.06 0.97 0.97
Poschiavo 11 M1 Yes 0.20 0.31 0.49 0.17 0.22 0.48 0.56 0.11 0.15 0.57 0.67
Samedan B 22 M3 – 0.00 0.42 0.58 0.39 0.50 0.37 0.36 0.37 0.46 0.43 0.36
Schaffhausen 23 M1 Yes 0.35 0.19 0.45 0.07 0.09 0.63 0.70 0.12 0.14 0.33 0.35
Sennwald 9 M3 Yes 0.37 0.33 0.29 0.10 0.14 0.67 0.73 0.09 0.12 0.78 0.83
Soral 30 M3 – 0.00 0.63 0.37 0.54 0.66 0.72 0.87 0.85 0.96 −2.75 −0.16
Trub 10 M3 – 0.00 0.77 0.23 0.20 0.27 0.74 0.72 0.18 0.22 0.78 0.72
Utzenstorf 23 M2 – 0.00 0.62 0.38 0.26 0.33 0.59 0.75 0.25 0.32 0.59 0.67
Visp 22 M3 Yes 0.44 0.23 0.33 0.31 0.38 0.66 0.71 0.40 0.54 0.54 0.54
Volketswil 30 M3 – 0.00 0.94 0.06 0.11 0.14 0.94 0.95 0.12 0.15 0.86 0.89
Vétroz 8 M3 Yes 0.50 0.09 0.41 0.08 0.10 0.55 0.66 0.07 0.08 0.53 0.72
Wila 16 M2 Yes 0.21 0.53 0.26 0.47 0.63 0.79 0.80 0.53 0.73 0.48 0.56
Wilchingen 30 M3 – 0.00 0.79 0.21 0.68 0.84 0.74 0.84 0.43 0.58 0.62 0.83
Worben 12 M3 Yes 0.65 0.24 0.11 0.03 0.04 0.87 0.89 0.02 0.03 0.90 0.95
Zürich 17 M3 – 0.00 0.17 0.83 0.39 0.47 0.17 0.25 0.58 0.83 −0.08 0.01

Mean – – – 0.23 0.48 0.29 0.24 0.30 0.70 0.75 0.25 0.31 0.53 0.67
Median – – – 0.15 0.43 0.25 0.20 0.26 0.74 0.78 0.21 0.24 0.63 0.72
Fig. 10. Relative importance of the different stresses for each well. The unexplained
ortion is computed as 1 - R2.

roundwater–surface water interaction is occurring. This strong control
f the Rhone river on the groundwater dynamics in this area was also
ound by Schürch and Vuataz (2000), and the results from this study
onfirm these findings. As river stages are in many places controlled
y humans, this provides an opportunity to manage the groundwater
n such aquifers by controlling the river stages.

. Discussion

.1. Temporal resolution of the head data

The models were calibrated against 30 different head time series
ith decreasing temporal resolutions. Similar to Van der Spek and
akker (2017), we found that the Nash–Sutcliffe Efficiency on average
lightly increased as the temporal resolution decreased. This is possibly
he result of the simultaneous estimation of the parameters of the
9

deterministic model and the noise model, which is known to sometimes
lead to non-robust parameter estimation (e.g., Evin et al., 2014). In
that case, the parameter(s) of the noise model are used to minimize
the value of the objective function, rather than the parameters of the
deterministic model, and the model parameters may not be optimal.
This is particularly the case for high temporal resolutions, for which
most models did not pass the autocorrelation test and subsequently
were not used for further analysis.

The results from this study confirm, with a larger sample size, the
finding from Collenteur et al. (2021) that the lumped-parameter models
used in this study, in combination with an AR(1) noise model, are
generally unable to produce uncorrelated noise errors for time series
with daily heads. Using higher resolution head data generally leads to
stronger autocorrelation in the noise errors. This finding, along with
the finding that using higher temporal resolutions does not necessarily
lead to better model performances, is not entirely unexpected. The
existence of autocorrelation indicates that there are fewer independent
measurements than the number of measurements in the time series,
and we are thus overestimating the effective sample size. Using head
data with a lower temporal resolution for model calibration therefore
does not necessarily imply that less information is available in the
data to infer the model parameters, possibly explaining why model
performances remain relatively similar. Using too few measurements
may, however, impede the ability to infer certain parameters. For
example, Kavetski et al. (2011) showed that the inference of parameters
that are responsible for fast processes improves when using a temporal
resolution that matches the time scale of the process. It is stressed here
that other models than those applied in this study may be able to use
more of the information contained in the head time series.

Testing the use of different temporal resolutions of the calibration
data was ultimately done to obtain reliable estimates of the parameter
uncertainties and associated confidence intervals. The results showed
that the estimated confidence intervals are not constant throughout the
different calibrations and can change substantially depending on the

temporal resolution of the head data used for calibration. For some
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models, often with low goodness-of-fit, the confidence intervals are
wide and/or unstable (e.g., Soral, Schaffhausen, and Visp), indicating
the parameters for these models are uncertain and could not be esti-
mated reliably. In many cases, the width of the confidence intervals
increases with decreasing temporal resolution of the head data (see,
for example, Kestenholz, Oberglatt, and Niederbipp). Thus, when using
head data with high temporal resolutions and not passing autocorre-
lation tests, there is a high change of (severely) underestimating the
parameter uncertainty.

In summary, changing the temporal resolution of the head data
used for model calibration generally has little impact on the model
goodness-of-fit, but may lead to substantially different confidence in-
tervals due to the violation of the assumption on the noise errors
being uncorrelated. Application of the models used in this study to
high resolution head data generally leads to a violation of the basic
statistical assumptions underlying commonly used uncertainty quan-
tification techniques (e.g., ∼ 𝑁(0; 𝜎2)). Given the fact that head time
series with high temporal resolutions are now widely available, there
is an urgent need for more research on how to robustly quantify
parameter uncertainties when calibrating models to such head data.
Until such techniques emerge, the use of head data with lower temporal
resolution to calibrate models is recommended when using the models
and uncertainty quantification techniques as applied in this study.

5.2. Selecting appropriate model structures

Different model structures to account for precipitation and evapora-
tion were tested for each monitoring well in this study. A single model
structure was selected using the average rank of the models from four
different goodness-of-fit metrics. This means that all goodness-of-fit
metrics weigh equally. Criteria such as the Bayesian or Akaike Infor-
mation criterion could not be used, as the different model structures
may be calibrated to head data with different temporal resolutions and
the number of error values in the noise time series strongly affects such
criteria. The goodness-of-fit metrics, however, could be computed using
the daily head measurements and simulations, and was therefore used.
The models always simulate the heads with a daily time step, regardless
of the temporal resolution of the head data used for model calibration.
As a result of these choices, no penalty was given for the number of
parameters in the models. If the number of parameters is taken into
account this might benefit the M1 model, which has less parameters
that need to be estimated. In this regard, it could be investigated if more
formal model selection strategies, such as Bayesian model selection
as outlined in Marshall et al. (2005), would yield different or similar
results.

Whether or not to include the river in the final model was decided
using the uncertainty of the response function (see Eq. (9)). Such an
approach has also been applied in other studies to determine if a stress
is influencing the heads or not, for example for pumping wells (Collen-
teur et al., 2019; Brakenhoff et al., 2022). For five monitoring wells
(Ermensee, Oberglatt, Poschiavo, Visp, and Wila), the parameter for
the gain of the response to river stage changes (𝐴𝑟𝑖𝑣) was estimated
at the upper boundary value of 𝐴𝑟𝑖𝑣 = 1. The estimated parameter
uncertainty may not be reliable because of this, which possibly affects
the applicability of the applied criteria. To investigate the impact of
possibly incorrectly keeping the river stress in the model, the models for
these five monitoring wells were compared to the same (re-calibrated)
models after deleting the river stress. The results from this analysis (see
Fig. A.14 in the Appendices) show that deleting the river stress from
the model decreases model performance in the evaluation period for
all models. However, visual inspection of the simulated heads shows
that these differences are only marginal for all wells but Visp.

As noted by Shapoori et al. (2015a), it is generally assumed that
models with a good fit can be used to decompose the head time
series into contributions of different stresses, and that the estimated
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contributions represent the true contributions, with some uncertainty.
This assumption was implicitly also made in this study, for example
to compute the relative contributions shown in Fig. 10. The analysis
described above shows that this assumption may not always be valid,
as there are different model structures with comparable fits but with
fundamentally different hydrological processes generating the simu-
lated head dynamics. The result thus strongly depends on the model
selection criteria. A confounding factor for this assumption here is
that both river stages and recharge are dependent on precipitation and
evaporation and are thus correlated to at least some extent. If it rains,
both recharge and river stages tend to increase, which may reduce our
ability to decompose the contributions of these two stresses without
adding additional information to better inform the model.

The finding that for these five monitoring wells there are multiple
model structures that perform almost equally well to simulate the
heads, only came to light after this additional analysis. A multi-model
approach, as for example is taken in Brakenhoff et al. (2022) as well
as in this study for the snow model, would have revealed this issue at
an earlier stage and is therefore recommended for future studies. This
way, additional criteria can be used to make a more informed decision
and to determine which model is best and used for further analysis. It
may well be that additional information from independent data sources
(e.g., water quality or isotopic data) is required to reliably decompose
the contributions of these two stresses.

5.3. Modeling heads in Switzerland

The results from this study show that taking additional (nonlinear)
processes into account in the model (as presented in M2 and M3) gener-
ally improves the simulation of the heads compared to the linear model
(M1). This finding adds to the growing body of literature showing that
nonlinear modeling concepts can improve the head simulation from
models using impulse response functions (e.g., Peterson and Western,
2014; Shapoori et al., 2015b; Collenteur et al., 2021), and should
be considered more often. The improved performance comes at the
expense of additional model parameters compared to linear models, but
that does not necessarily result in wider confidence intervals (see the
example of Davos in Fig. 6). This is in line with Moeck et al. (2018),
which shows that additional parameters do not lead necessary to larger
model uncertainty and the model structure can be more important
than the amount of parameters and model calibration approach. An
additional advantage of using such nonlinear models is that the results
are more physically interpretable, and can for example be used to
estimate groundwater recharge (e.g., Collenteur et al., 2021). For pure
head prediction purposes, however, the linear model may suffice or
even be preferred for individual wells, as shown by the four models in
this study where the linear model outperformed the nonlinear models.
This result also highlights the benefits of an individual assessments of
which model structure best works for each well.

The inclusion of snow processes is important to simulate groundwa-
ter dynamics in Switzerland and similar cold-temperature regions. This
is particularly the case in heavily snow-impacted aquifers (e.g., Davos),
and the use of a degree-day snow model can substantially improve
simulation results in these settings. The inclusion of a snow model
increases the number of parameters but also improved process repre-
sentation, which may ultimately lead to better predictions when con-
ditions change (e.g., warmer climate with less snowfall). The degree-
day snow model was chosen because it was assumed that the head
time series may not contain enough information to parameterize more
complex snow models. The results from this study could be used to
select monitoring wells clearly impacted by snow processes, to per-
form a more systematic analysis on the validity of this assumption
and the applicability of more complex snow models, following, for
example, Girons Lopez et al. (2020).

Despite many models achieving reasonable fits with the observed
data, for some monitoring wells the lumped-parameter models per-

formed less well. We highlight here that poorly performing models are
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(just as) valuable, as they inform us about our incomplete knowledge
about the groundwater system causing the observed dynamics and/or
how to model them. This allows us to perform a targeted search into
the causes and thus improve our understanding of the groundwater
system under study. Wells with particularly low performance (NSE
< 0.5 during evaluation) are for example Soral, Zürich, Marthalen,
Schaffhausen, and Samedan B. Assuming that the models generally
work well, as exemplified by the other models, we speculate here about
the possible reasons for poor model performances.

The model for Soral showed a poor performance over the entire
simulation period. This may be caused by the large depth to water
table (78 m) and long response times not well represented in the
model. However, the strong rising trend in the head is unlikely to be
caused by precipitation and evaporation, as large meteorological and
hydrological droughts that would have the opposite effect occurred
in this last period (e.g., Brunner et al., 2019). This suggests that
some unknown influence caused rising heads. The occurrence of large
drought events may explain the deviations for Schaffhausen around
the years 2003 and 2018. Possibly, unknown, local, and/or tempo-
rary groundwater pumping in these periods caused increased head
declines, but more investigations are required to test this hypothesis.
Such temporary pumping almost certainly affected the heads in Zürich
between 2008 and 2012, in order to drain the construction site of
the ‘‘Durchmesserlinie’’ tunnel built between 2008 and 2010 (Kobel,
2009). Pumping also likely caused the overestimation of the model
for Buechberg in the last few years, as a fishfarm started extracting
groundwater here (Y. Chopard, personal communication, 2023/01/18).
The poor performance of the model for the monitoring well in Samedan
may be explained by the lack of river stage data for the nearby river Inn
that likely affects the head dynamics. If data for such missing stresses is
available, these could easily be added to the model to try and improve
the model fit and test these hypotheses (see, for example, von Asmuth
et al., 2008).

6. Analyzing nationwide monitoring networks: Challenges and
ways forward

As demonstrated in this study, lumped-parameter modeling using
impulse response functions is a powerful method to analyze hydraulic
head data observed in different hydrogeological settings, as commonly
observed in nationwide monitoring networks. The models can be setup
and calibrated in a limited amount of time and with low data require-
ments, while high accuracy predictions are often obtained. Nationwide
monitoring networks typically contain more monitoring wells than
the data set analyzed in this study, posing both opportunities and
challenges. The workflow applied in this study may become too compu-
tationally demanding, for example when analyzing tens of thousands of
time series as is done in Zaadnoordijk et al. (2019) for the Netherlands.

Depending on the purpose of modeling, different stresses can be
included in the model. Particularly for nationwide networks, obtain-
ing data for stresses other than precipitation and evaporation may
be difficult and time consuming. This puts a limit on the potential
performance of the models. Collecting this data, for example river
stages in this study, would also be necessary for other types of models
and is often a one-time exercise. The output of this exercise is valuable
and may be worth the investment. This will be particularly true if the
results are made publicly available for others, reducing data collection
efforts for future studies. Often we do not know which stresses cause
head fluctuations and, as demonstrated in this study, lumped-parameter
models may be helpful in building and testing hypotheses of where
other stresses or anthropogenic influences are required to model the
heads. If one is interested in studying long-term groundwater trends
caused by meteorological stresses only, the method can be used to select
appropriate monitoring wells for this purpose.

The brute-force approach to select the temporal resolution of the
head data may not always be feasible for nationwide monitoring net-
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work with more wells (as in Zaadnoordijk et al., 2019, for example).
The computational demand could be reduced substantially, however,
by checking for autocorrelation directly after model calibration, and
decreasing the temporal resolution only if there is still significant au-
tocorrelation present. Alternatively and much more efficiently, a fixed
temporal resolution may be used, as is for example done in Brakenhoff
et al. (2022). An individual approach to select the temporal resolution
may, however, allow the use of more data for model calibration, which
potentially allows the identification of more complex models. Future
research could focus on developing (empirical) rules and practical
recommendations on how to select the head data used for calibration,
preferably as a pre-processing step.

With increasing size of the monitoring networks, the outcomes
depend more and more on the ability of the automated, reproducible
workflow for the modeling to produce ‘good’ models for very different
groundwater dynamics. Any improvements in the methods for model
(structure) calibration and selection would thus benefit the final re-
sults. In the workflow presented here, the estimation of the model
parameters depends for a large part on the optimization technique
to find an optimum. Similarly, the selection of the model structure
depends on the goodness-of-fit metrics, although other criteria may
be applied for this purpose as well. Hydrological signatures are for
example commonly used for this purpose in streamflow modeling (e.g.,
Hrachowitz et al., 2014; Coxon et al., 2014), and may also be applicable
in groundwater modeling. As the size of the network increases, we
also learn more about the hydrogeological and climatological settings
under which certain model structures work best, and what parameters
are typically found. Recent explorations to learn more about these
relationships (Jemel,janova et al., 2023) have shown that relationships
exist between the model parameters and hydrogeological setting, and
the model structure and climatic conditions. Future research could
investigate if we can exploit such relationships to make more informed
decisions about (initial) parameter values and suitable model struc-
tures, depending on the characteristics of the head time series and the
well setting, to further improve the modeling workflow.

7. Conclusions and outlook

The main objective of this study was to assess the applicability
of lumped-parameter groundwater models to efficiently analyze data
from nationwide groundwater monitoring networks. The data from 28
piezometers of the Swiss groundwater monitoring network NAQUA
were used as a case study. The models were used to increase under-
standing of the groundwater system by investigating which stresses
and processes are required to model measured head fluctuations. To
this end, different model structures were tested to take precipitation
and evaporation into account. To make the models applicable in snow-
dominated alpine environments, the implementation of a degree-day
snow model was tested in this type of model, for the first time.

The results showed that most of the head time series from the Swiss
monitoring network could be modeled with high accuracy using the
lumped-parameter models and only a handful of stresses for which
data is commonly available. This demonstrates the general applicability
of the model and method to simulate a wide range of groundwater
dynamics. The nonlinear models (M2 and M3) generally resulted in
better fits with the observed data compared to the linear model (M1),
and the nonlinear model accounting for snow processes (M3) was
often preferred over the nonlinear model without this process (M2).
The inclusion of snow processes is clearly important when modeling
heads in more alpine environments and thus should be taken into
account in lumped-parameter groundwater models. For 15 out of 28
monitoring wells the river stage was used in the model to explain
part of the measured heads. This indicates the general importance of
groundwater–surface water interactions when modeling groundwater
dynamics throughout Switzerland. For a few monitoring wells there are
signs that the heads may be influenced by stresses not included in this

study, such as pumping. Caution is required when using the head data
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of these monitoring wells for investigations into long-term groundwater
developments under natural conditions, e.g., resulting from climate
change rather than anthropogenic influences such as pumping.

The models developed in this study were primarily used to improve
the understanding of the groundwater systems in Switzerland. In future
studies, the models can be used for other purposes as well, for example
for the hindcasting of heads to study long-term groundwater drought
developments (e.g., Brakkee et al., 2022), or the short-term forecasting
12

of heads (e.g., Mackay et al., 2014). Apart from practical applications,
more work is required to further improve the application and robust-
ness of the presented workflow, although high accuracy in the modeled
groundwater dynamics was already obtained. In this regard particularly
the evaluation and selection of models needs more research. Future
studies therefore should investigate and compare formal model selec-
tion strategies such as Bayesian model selection (e.g., Marshall et al.,
2005), and the use of hydrological signatures to evaluate and select

models (e.g., Hrachowitz et al., 2014; Coxon et al., 2014).
Fig. A.11. Effect of the temporal resolution of the head measurements on the autocorrelation in the noise, measured as the 𝑝-value of the Stoffer–Toloi autocorrelation test. The
vertical dashed lines indicate the temporal resolution where the model passed the autocorrelation test. The horizontal dashed lines indicate the significance level 𝛼 = 0.05.
Fig. A.12. Widths of the 95% confidence intervals (in meters, normalized around zero) for each monitoring well and all temporal resolutions of the head data. The vertical dashed
ines indicate the temporal resolution where the model passed the autocorrelation test. Note that the confidence interval was computed neglecting any autocorrelation in the noise,
f any, which means that they may be poor estimates.
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Fig. A.13. Measured and simulated heads for all monitoring wells. The shaded area denotes the 95% confidence intervals of the models.
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Fig. A.14. Comparison of selected models with and without a river stress in the model to explain the head fluctuations.
Table A.4
Goodness-of-fit metrics for the evaluation data for the three different model structures for all monitoring wells.

Metric MAE RMSE NSE KGE

Structure M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

Buechberg 0.15 0.15 0.15 0.19 0.16 0.17 0.74 0.80 0.79 0.93 0.93 0.94
Crêtelongue 0.10 0.09 0.09 0.11 0.11 0.11 0.36 0.43 0.42 0.74 0.76 0.76
Davos 0.10 0.10 0.08 0.12 0.12 0.10 0.64 0.65 0.75 0.70 0.72 0.76
Ermensee 0.25 0.25 0.27 0.34 0.34 0.38 0.73 0.73 0.67 0.69 0.64 0.65
Gossau 0.21 0.23 0.22 0.26 0.28 0.26 0.76 0.72 0.75 0.77 0.76 0.75
Hasle 0.07 0.07 0.07 0.09 0.09 0.09 0.80 0.80 0.80 0.88 0.88 0.89
Kestenholz 0.43 0.28 0.25 0.51 0.36 0.32 0.70 0.85 0.88 0.74 0.93 0.94
Lamone 0.17 0.14 0.15 0.21 0.19 0.20 0.51 0.63 0.58 0.63 0.56 0.53
Maienfeld 0.24 0.25 0.23 0.27 0.29 0.28 0.76 0.73 0.75 0.76 0.76 0.77
Marthalen 0.35 0.33 0.33 0.42 0.40 0.40 0.25 0.32 0.31 0.24 0.31 0.31
Massongex 0.12 0.11 0.12 0.15 0.14 0.15 0.86 0.87 0.86 0.81 0.84 0.79
Niederbipp 0.42 0.21 0.21 0.50 0.26 0.24 0.74 0.93 0.94 0.80 0.95 0.96
Oberglatt 0.67 0.68 0.66 0.82 0.82 0.78 0.46 0.46 0.51 0.60 0.53 0.58
Oberwichtrach 0.06 0.05 0.05 0.08 0.06 0.06 0.95 0.97 0.97 0.98 0.97 0.97
Poschiavo 0.11 0.13 0.12 0.15 0.17 0.16 0.57 0.45 0.53 0.67 0.58 0.60
Samedan B 0.47 0.45 0.37 0.56 0.54 0.46 0.14 0.20 0.43 0.04 0.12 0.36
Schaffhausen 0.12 0.16 0.15 0.14 0.21 0.18 0.33 −0.47 −0.08 0.35 0.20 0.20
Sennwald 0.09 0.09 0.09 0.12 0.12 0.12 0.76 0.77 0.78 0.78 0.83 0.83
Soral 0.85 0.85 0.85 0.96 0.96 0.96 −2.77 −2.76 −2.75 −0.17 −0.16 −0.16
Trub 0.22 0.19 0.18 0.28 0.24 0.22 0.66 0.74 0.78 0.69 0.72 0.72
Utzenstorf 0.29 0.25 0.27 0.37 0.32 0.34 0.47 0.59 0.56 0.64 0.67 0.62
Visp 0.40 0.42 0.40 0.55 0.56 0.54 0.53 0.50 0.54 0.54 0.48 0.54
Volketswil 0.15 0.12 0.12 0.18 0.15 0.15 0.81 0.86 0.86 0.83 0.88 0.89
Vétroz 0.11 0.09 0.07 0.12 0.10 0.08 0.01 0.32 0.53 0.33 0.68 0.72
Wila 0.59 0.53 0.54 0.76 0.73 0.73 0.44 0.48 0.48 0.50 0.56 0.56
Wilchingen 0.87 0.66 0.43 1.05 0.81 0.58 −0.22 0.27 0.62 0.54 0.70 0.83
Worben 0.03 0.03 0.02 0.04 0.04 0.03 0.81 0.83 0.90 0.83 0.87 0.95
Zürich 0.59 0.58 0.58 0.84 0.84 0.83 −0.11 −0.09 −0.08 −0.04 −0.00 0.01

Median 0.21 0.20 0.19 0.26 0.25 0.23 0.60 0.64 0.65 0.69 0.71 0.73
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